Dimension Reduction under the Ricci Flow on Manifolds with Nonnegative Curvature Operator
نویسنده
چکیده
In this paper, we study the dilation limit of solutions to the Ricci flow on manifolds with nonnegative curvature operator. We first show that such a dilation limit must be a product of a compact ancient Type I solution of the Ricci flow with flat factors. Then we show under the Type I normalized Ricci flow, the compact factor has a subsequence converge to a Ricci soliton.
منابع مشابه
On dimension reduction in the Kähler-Ricci flow
We consider dimension reduction for solutions of the Kähler-Ricci flow with nonegative bisectional curvature. When the complex dimension n = 2, we prove an optimal dimension reduction theorem for complete translating KählerRicci solitons with nonnegative bisectional curvature. We also prove a general dimension reduction theorem for complete ancient solutions of the Kähler-Ricci flow with nonneg...
متن کاملEvolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow
Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...
متن کاملRicci Flow and Nonnegativity of Sectional Curvature
In this paper, we extend the general maximum principle in [NT3] to the time dependent Lichnerowicz heat equation on symmetric tensors coupled with the Ricci flow on complete Riemannian manifolds. As an application we exhibit complete Riemannian manifolds with bounded nonnegative sectional curvature of dimension greater than three such that the Ricci flow does not preserve the nonnegativity of t...
متن کاملRicci Flow and Nonnegativity of Curvature
In this paper, we prove a general maximum principle for the time dependent Lichnerowicz heat equation on symmetric tensors coupled with the Ricci flow on complete Riemannian manifolds. As an application we construct complete manifolds with bounded nonnegative sectional curvature of dimension greater than or equal to four such that the Ricci flow does not preserve the nonnegativity of the sectio...
متن کاملLower bounds on Ricci flow invariant curvatures and geometric applications
We consider Ricci flow invariant cones C in the space of curvature operators lying between nonnegative Ricci curvature and nonnegative curvature operator. Assuming some mild control on the scalar curvature of the Ricci flow, we show that if a solution to Ricci flow has its curvature operator which satsisfies R+ε I ∈ C at the initial time, then it satisfies R+Kε I ∈ C on some time interval depen...
متن کامل